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Abstract
We present the fermionic representation for the q-deformed hypergeometric
functions related to Schur polynomials. We show that these multivariate
hypergeometric functions are tau-functions of the KP hierarchy, and at the same
time they are the ratios of Toda lattice tau-functions, considered by Takasaki,
evaluated at certain values of higher Toda lattice times. The variables of the
hypergeometric functions are related to the higher times of those hierarchies
via a Miwa change of variables. The discrete Toda lattice variable shifts
parameters of hypergeometric functions. Hypergeometric functions of type
p�s can also be viewed as a group 2-cocycle for the �DO on the circle
(the group times are higher times of TL hierarchy and the arguments of a
hypergeometric function). We obtain the determinant representation and the
integral representation of a special type of KP tau-functions, these results
generalize some of the results of Milne concerning multivariate hypergeometric
functions. We write down a system of partial differential equations for these
tau-functions (string equations).

PACS number: 0230G

1. Milne’s hypergeometric series

1.1. Schur symmetric function

For a partition

n = (n1, n2, . . . , nr) n1 � n2 � · · · � nr r � |n| = n1 + · · · + nr (1.1)

whose length l(n) = r � N , and indeterminates x(N) = (x1, . . . , xN), the Schur polynomial
sn(x(N)), a symmetric function of variables x(N), is defined as follows [12]:

sn(x(N)) = an+δ

aδ
an = det(x

nj
i )1�i,j�N δ = (N − 1, N − 2, . . . , 1, 0) (1.2)

sm(x(N)) = 0 if l(m) > N. (1.3)
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In the KP theory it is suitable to use another definition of the Schur function corresponding to
the partition n = (n1, . . . , nr):

sn(t) = det(pni−i+j (t))1�i,j�r (1.4)

where pm(t) is the elementary Schur polynomial defined by the Taylor expansion

eξ(t,z) = exp

( +∞∑
k=1

tkz
k

)
=

+∞∑
n=0

znpn(t). (1.5)

It is related to sn(x(N)) and sn′(x(N)), where a partition n′ is conjugate to n, as follows [12]:

sn(t
+(x(N))) = sn(x(N)) sn(t

−(x(N))) = sn′(x(N)) (1.6)

via the following changes of variables (which is known as the Miwa change of variables in the
literature on integrable systems):

t+m(x(N)) =
N∑
i=1

xmi

m
t−m (x(N)) = −

N∑
i=1

xmi

m
. (1.7)

1.2. The multiple basic hypergeometric series related to Schur polynomials

There are several well known different multivariate generalizations of hypergeometric series of
one variable [10, 11]. The multiple basic hypergeometric series related to Schur polynomials
were introduced by Milne [1] as follows:

p�s

(
a1, . . . , ap

b1, . . . , bs

∣∣∣∣ q,x(N)) =
∑

n
l(n)�N

(qa1; q)n · · · (qap ; q)n
(qb1; q)n · · · (qbs ; q)n

qn(n)

Hn(q)
sn(x(N)) |q| < 1.

(1.8)

The coefficient (qa; q)n associated with partition n:

(qa; q)n = (qa; q)n1(q
a−1; q)n2 · · · (qa−r+1; q)nr (1.9)

(qa; q)0 = 1 (qa; q)n = (1 − qa)(1 − qa+1) · · · (1 − qa+n−1). (1.10)

The multiple qn(n) defined on the partition n and the q-deformed ‘hook polynomial’ Hn(q):

qn(n) = q
∑l(n)

i=1 (i−1)ni Hn(q) =
∏

(i,j)∈n

(
1 − qhij

)
hij = (ni + n′

j − i − j + 1).

(1.11)

For N = 1 we obtain

p�s

(
a1, . . . , ap

b1, . . . , bs

∣∣∣∣ q, x) =
∞∑
n=0

(qa1; q)n · · · (qap ; q)n
(qb1; q)n · · · (qbs ; q)n

xn

(q; q)n . (1.12)

For the bosonic representation of basic hypergeometric functions of one variable, see [14].
Many special functions and polynomials (such as the q-Askey–Wilson polynomials, q-

Jacobi polynomials, q-Gegenbauer polynomials, q-Racah polynomials, q-Hahn polynomials,
expressions for Clebsch–Gordan coefficients) are just N = 1 hypergeometric functions
evaluated at special parameter values.
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1.3. Hypergeometric series of a double set of arguments

p�s

(
a1, . . . , ap

b1, . . . , bs

∣∣∣∣q,x(N),y(N))
=

∑
n

l(n)�N

(qa1; q)n · · · (qap ; q)n
(qb1; q)n · · · (qbs ; q)n

qn(n)

Hn(q)

sn(x(N))sn(y(N))

sn
(
1, q, q2, . . . , qN−1

) |q| < 1.

(1.13)

This formula defines the multiple basic hypergeometric function of two sets of variables which
was also introduced by Milne (see [1, 10]). For q → 1 the functions (1.8) and (1.13) are also
known as hypergeometric functions of the matrix argument which are related to zonal spherical
polynomials for GL(N,C)/U(N) symmetric space.

2. A brief introduction to the fermionic description of the KP and TL hierarchies [5, 9]

2.1. Fermionic operators and Fock space

We have fermionic fields

ψ(z) =
∑
k

ψkz
k ψ∗(z) =

∑
k

ψ∗
k z

−k−1 (2.1)

where fermionic operators satisfy the canonical anticommutation relations

[ψm,ψn]+ = [ψ∗
m,ψ

∗
n ]+ = 0 [ψm,ψ

∗
n ]+ = δmn. (2.2)

Let us introduce left and right vacuums by the properties

ψm|0〉 = 0 (m < 0) ψ∗
m|0〉 = 0 (m � 0) (2.3)

〈0|ψm = 0 (m � 0) 〈0|ψ∗
m = 0 (m < 0). (2.4)

The vacuum expectation value is defined by relations

〈0|1|0〉 = 1 〈0|ψmψ∗
m|0〉 = 1 m < 0 〈0|ψ∗

mψm|0〉 = 1 m � 0 (2.5)

〈0|ψmψn|0〉 = 〈0|ψ∗
mψ

∗
n |0〉 = 0 〈0|ψmψ∗

n |0〉 = 0 m = n. (2.6)

Let us note that relations (2.2)–(2.6) are invariant under the following transformation:

ψn → e−Tnψn ψ∗
n → eTnψ∗

n (Tn ∈ C). (2.7)

Consider infinite matrices (aij )i,j∈Z satisfying the condition: there exists anN such that aij = 0
for |i−j | > N . Let us take the set of linear combinations of quadratic elements

∑
aij : ψiψ∗

j :,
where : : denotes normal ordering : ψiψ∗

j : = ψiψ
∗
j − 〈0|ψiψ∗

j |0〉. These elements together

with 1 span an infinite-dimensional Lie algebra ĝl(∞):[∑
aij : ψiψ

∗
j :,

∑
bij : ψiψ

∗
j :

]
=
∑

cij : ψiψ
∗
j : + c0 (2.8)

cij =
∑
k

aikbkj −
∑
k

bikakj c0 =
∑

i<0,j�0

aij bji −
∑

i�0,j<0

aij bji . (2.9)

Now we define the operator gwhich is an element of the group corresponding to the Lie algebra
ĝl(∞):

gψng
−1 =

∑
m

ψmamn g−1ψ∗
ng =

∑
m

anmψ
∗
m. (2.10)
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2.2. The KP and Toda tau-functions

First we define the vacuum vectors labelled by the integer M:

|M〉 = �M |0〉 �M = ψM−1 · · ·ψ0 (M > 0) �M = ψ∗
M · · ·ψ∗

−2ψ
∗
−1 (M < 0)

〈M| = 〈0|�∗
M �∗

M = ψ∗
0 · · ·ψ∗

M−1 (M > 0) �∗
M = ψ−1ψ−2 · · ·ψM (M < 0).

(2.11)

The tau-function of the KP equation and the tau-function of the two-dimensional Toda lattice
(TL) are sometimes defined as

τKP (M, t) = 〈M|eH(t)g|M〉 τTL(M, t, t
∗) = 〈M|eH(t)geH

∗(t∗)|M〉. (2.12)

According to [5] the integer M in (2.12) plays the role of a discrete Toda lattice variable. The
times t = (t1, t2, . . .) and t∗ = (t∗1 , t

∗
2 , . . .) are called higher Toda lattice times [5, 9]. The first

times of this set t1, t2, t3 are independent variables for the KP equation (2.18), which is the
first non-trivial equation in the KP hierarchy. H(t) andH ∗(t∗) belong to the following ĝl(∞)

Cartan subalgebras:

H(t) =
+∞∑
n=1

tnHn H ∗(t∗) =
+∞∑
n=1

t∗nH−n Hn =
+∞∑

m=−∞
: ψmψ

∗
m+n : . (2.13)

For the Hamiltonians we have Heisenberg algebra commutation relations:

[Hn,Hm] = nδm+n,0. (2.14)

The action of eH(t) on the fermions ψi, ψ∗
i and on the fermionic fields ψ(z), ψ∗(z) is

eH(t)ψie
−H(t) =

+∞∑
n=0

pn(t)ψi−n eH(t)ψ∗
i e−H(t) =

+∞∑
n=0

pn(t)ψ
∗
i+n (2.15)

eH(t)ψ(z)e−H(t) = ψ(z)eξ(t,z) eH(t)ψ∗(z)e−H(t) = ψ∗(z)e−ξ(t,z) (2.16)

e−H ∗(t∗)ψ(z)eH
∗(t∗) = ψ(z)e−ξ(t∗,z−1) e−H ∗(t∗)ψ∗(z)eH

∗(t∗) = ψ∗(z)eξ(t
∗,z−1). (2.17)

In terms of tau-functions [5, 9] the KP equation and TL equation are

4∂t1∂t3u = ∂4
t1
u + 3∂2

t2
u + 3∂2

t1
u2 u = 2∂2

t1
log τKP (2.18)

∂t1∂t∗1 ϕn = eϕn+1−ϕn − eϕn−ϕn−1 eϕn = τTL(n + 1, t, t∗)
τT L(n, t, t∗)

. (2.19)

The KP equation, that originally served in plasma physics (see [7] for references), now plays a
very important role both in modern physics and in mathematics. It was integrated by a dressing
method in the paper by Zakharov and Shabat [4, 7]. The TL equation was first integrated in
[8]. In the present paper we use the approach of [2, 3, 5, 9].

3. Hypergeometric functions related to Schur functions

3.1. KP tau-function τr(M, t, β)

Let r be a function of one variable. We consider an Abelian subalgebra in ĝl(∞) formed by
the set of fermionic operators Ak ,

Ak =
∞∑

n=−∞
ψ∗
n−kψnr(n)r(n− 1) · · · r(n− k + 1) k = (1, 2, . . .)

A(β) =
∞∑
n=1

βnAn.

(3.1)
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[Am,Ak] = 0 for each m, k. The fermionic operators Ak resemble Toda lattice Hamiltonians
−H ∗

k (2.13), and coincide with them if r(n) = 1, n ∈ Z. β = (β1, β2, . . .) is a collection of
independent variables. For a given function r and a partition n = (n1, . . . , nk), we introduce
the notation

rn(M) =
k∏
i=1

r(1 − i +M)r(2 − i +M) · · · r(ni − i +M) r0(M) = 1. (3.2)

Let us consider the tau-function of the KP hierarchy

τr(M, t, β) := 〈M|eH(t)e−A(β)|M〉. (3.3)

Using the Taylor expansions eH = 1 +H + · · · and e−A = 1 − A + · · · one can derive:

Proposition 1. We have an expansion

τr(M, t, β) = 1 +
+∞∑
n=1

∑
|n|=n

rn(M) sn(t) sn(β). (3.4)

We shall not consider the problem of convergence of this series.

Remark 1. The variables M, t play the role of KP higher times, β is a collection of group
times for a commuting subalgebra of additional symmetries of KP (see remark 7 in [13]). From
a different point of view (3.4) is a tau-function of the two-dimensional Toda lattice [9] with two
sets of continuous variables t, β and one discrete variableM . Formula (3.4) is symmetric with
respect to t ↔ β. This ‘duality’ supplies us with the string equations [3] which characterize
a tau-function of hypergeometric type (see below). In [2] the expansions of a tau-function in
terms of Schur functions were considered, without specifying the coefficients and in a different
context.

Now we introduce the operators

Ãk =
+∞∑

n=−∞
ψnψ

∗
n+kr̃(n + 1) . . . r̃(n + k) k = (1, 2, . . .) Ã(β̃) =

∞∑
n=1

β̃nÃn. (3.5)

Proposition 2. The generalization of proposition 1

〈M|eÃ(β̃)e−A(β)|M〉 = 1 +
+∞∑
n=1

∑
|n|=n

(r̃r)n(M)sn(β̃)sn(β). (3.6)

In what follows one can put r̃ = 1, since (3.6) depends only on r̃r .

3.2. H0(T ), twisted fermions ψ(T , z), ψ∗(T , z) and bosonization rules

Let r = 0, and put r(n) = eTn−1−Tn , where the variables Tn are defined up to a constant
independent of n. We define a Hamiltonian H0(T ) ∈ ĝl(∞) (all Tn ∈ C are finite):

H0(T ) :=
∞∑

n=−∞
Tn : ψ∗

nψn : (3.7)

which produces the transformation (2.7):

e∓H0(T )ψne
±H0(T ) = e±Tnψn e∓H0(T )ψ∗

ne±H0(T ) = e∓Tnψ∗
n (3.8)

eH0(T )|M〉 = eTM−T0 |M〉 (3.9)

eH0(T )Ã(β̃)e−H0(T ) = H(β̃) e−H0(T )A(β)eH0(T ) = −H ∗(β). (3.10)
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Let r = 0. It is convenient to consider the fermionic operators

ψ(T , z) = eH0(T )ψ(z)e−H0(T ) =
n=+∞∑
n=−∞

e−Tnznψn (3.11)

ψ∗(T , z) = eH0(T )ψ∗(z)e−H0(T ) =
n=+∞∑
n=−∞

eTnz−n−1ψ∗
n . (3.12)

For the Miwa variables t±(x(N)) and t∗±(y(N)), and for the ‘Hamiltonians’ A and Ã
defined by (3.1) and (3.5), one can derive the bosonization rules:

e−A(t∗+(y(N)))|M〉 = ψ(T , y1) . . . ψ(T , yN)|M −N〉
0+(M,N,T ,y(N))

(3.13)

e−A(t∗−(y(N)))|M〉 = ψ∗(T , y1) . . . ψ
∗(T , yN)|M +N〉

0−(M,N,T ,y(N))
(3.14)

〈M|eÃ(t+(x(N))) =
〈M −N |ψ∗(−T̃ , 1

xN
) . . . ψ∗(−T̃ , 1

x1
)

0̃+(M,N, T̃ ,x(N))
(3.15)

〈M|eÃ(t−(x(N))) =
〈M +N |ψ(−T̃ , 1

xN
) . . . ψ(−T̃ , 1

x1
)

0̃−(M,N, T̃ ,x(N))
. (3.16)

Here T̃n are related to Ã via (3.5) and r̃(n) = eT̃n−1−T̃n . The Vandermond coefficients are

0+(M,N,T ,y(N)) =
∏
i<j (yi − yj )

(y1 . . . yN)N−M
τ(M, 0,T , 0)

τ (M −N, 0,T , 0)
(3.17)

0−(M,N,T ,y(N)) =
∏
i<j (yi − yj )

(y1 . . . yN)M+N

τ(M, 0,T , 0)
τ (M +N, 0,T , 0)

(3.18)

0̃±(M,N, T̃ ,x(N)) = (x1 · · · xN)0±(M,N, T̃ ,x(N)). (3.19)

The notation τ(M, 0,T , 0) is explained in the next subsection, see (3.21).
In Miwa variables one can rewrite the correlators (3.6), for instance,

〈M|eÃ(t+(x(N)))e−A(t∗+(y(N)))|M〉

=
〈M −N |ψ∗(−T̃ , 1

xN
) . . . ψ∗(−T̃ , 1

x1
)ψ(T , y1) . . . ψ(T , yN)|M −N〉

0̃+(M,N, T̃ ,x(N))0+(M,N,T ,y(N))
. (3.20)

3.3. Toda lattice tau-function τ(M, t,T , t∗)

In this section we proceed with the following Toda lattice tau-function (2.12), which depends
on the three sets of variables t,T , t∗ and on M ∈ Z:

τ(M, t,T , t∗) = 〈M|eH(t) exp

( ∞∑
−∞

Tn : ψ∗
nψn :

)
eH

∗(t∗)|M〉 (3.21)

where : ψ∗
nψn : = ψ∗

nψn − 〈0|ψ∗
nψn|0〉. Since the operator

∑∞
−∞ : ψ∗

nψn : commutes with
all elements of the ĝl(∞) algebra, one can put T−1 = 0 in (3.21).

As we shall see the hypergeometric functions (1.12) and (1.8) are ratios of tau-functions
(3.21) evaluated at special values of times t,T , t∗. It is true only in the case when all parameters
ak of the hypergeometric functions are non-integers. For the case when at least one of the
indices ak is an integer, we will need a tau-function of an open Toda lattice.

The tau-function (3.21) is linear in each eTn . It is described by the following proposition:
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Proposition 3. Let functions r(n) and r̃(n) be defined through the relations

r(n) = eTn−1−Tn r̃(n) = eT̃n−1−T̃n . (3.22)

For a tau-function (3.21) we have the expansions

τ(M, t,T , t∗)
τ (M, 0,T , 0)

= 1 +
+∞∑
n=1

∑
|n|=n

rn(M)sn(t)sn(t
∗) (3.23)

τ(M, t, T̃ + T , t∗)

τ (M, 0, T̃ + T , 0)
= 1 +

+∞∑
n=1

∑
|n|=n

(r̃r)n(M)sn(t)sn(t
∗) (3.24)

which are just the formulae (3.4) and (3.6) for functions r = 0 and r̃ = 0.

We can put r̃ = 1. The following equations hold:

∂t1∂t∗
1
φn = r(n)eφn−1−φn − r(n + 1)eφn−φn+1 e−φn = τr(n + 1, t, t∗)

τr(n, t, t∗)
(3.25)(

τ(n) := τr(n, t, t
∗)
)

τ(n)∂t∗
1
∂t1τ(n)− ∂t1τ(n)∂t∗

1
τ(n) = r(n)τ (n− 1)τ (n + 1). (3.26)

Equations (3.25) and (3.26) are still true in the case where r(n) has zeros. These equations
can easily be derived from (B.1) and (B.2).

If the function r has no integer zeros, using the change of variables ϕn = −φn − Tn we
obtain the Toda lattice equation in the standard form (2.19) [9]. When the function r has zeros
for integer values of its argument, namelyM1 > M2 > · · · > Me, the tau-function describes a
set of open Toda lattices between each pair of neighbour zeros (between neighbour zerosMi+1,
Mi there is an open chain with a number of sites given by Mi −Mi+1), and two semi-infinite
Toda lattices, one of them ends on the smallest zero and the other on the largest zero. It follows
from (3.2) and (3.4) that

r(Mk) = 0 ⇒ τr(Mk, t, β) = 1. (3.27)

Then the Hirota equation (3.26) can be viewed as a recurrent relation which expresses the
tau-function with a discrete Toda lattice variable n via τr(Mi ± 1, t, β), τr(Mi, t, β) = 1.
Then from (3.2) and (3.4) we see the following. In the regions Mi > M > Mi+1 the series
(3.4) only has a finite number of non-vanishing terms. For the regionM > M1 the sum is only
over the Young diagrams n of length l(n) < M −M1. For the region M < Me only those
diagrams n for which the conjugated diagrams n′ have length l(n′) � Me −M contribute to
the series (3.4).

Notation. The notation τr(M, t, β) will be used only for the KP tau-function (3.3), while
τ(M, t,T , t∗) denotes the TL tau-function (3.21). Also β = t∗.

3.4. Linear equations for the tau-function τr

Here we shall write down linear equations, which follow from the explicit fermionic
representation of the tau-function (3.3) via the bosonization formulae of subsection 3.2. These
equations may also be viewed as being the constraints which result in the string equations.
For the variables t−(x(N)), using 〈M|A = 0 and using the relation Ak = eH0H−ke−H0 inside
the fermionic correlator (3.20), we obtain the partial differential equations for the tau-function
(3.4):

∂τr(M, t
−(x(N)), t∗)
∂t∗k

= 1

0̃

(
N∑
i=1

(xir(−xi∂xi ))k
)
0̃τr(M, t

−(x(N)), t∗) (3.28)
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where 0̃ = 0̃−(M,N, 0,x(N)). These equations have the meaning of string constraint
equations for the tau-function (3.4). In variables t∗−(y(∞)) we can rewrite (3.28) as

(−1)k
+∞∑
i=1

ek−1

(
1
y1
, . . . , 1

yi−1
, 1
yi+1
, . . .

)
∏
j =i (1 − yi/yj )

∂τr(M, t
−(x(N)), t∗−(y(∞)))

∂yi

= 1

0̃

(
N∑
i=1

(xir(−xi∂xi ))k
)
0̃τr(M, t

−(x(N)), t∗−(y(∞))) (3.29)

where ek(y) is a symmetric function defined through the relation
∏+∞
i=1(1+tyi) = ∑+∞

k=0 t
kek(y).

Also we have(
M+N−1∑
k=1

k −
N∑
i=1

xi∂xi

)
0̃−τ(M, t−(x(N)),T , t∗−(y(N ′)))0

−

=
(
M+N ′−1∑
k=1

k −
N ′∑
i=1

(
∂yi yi

))
0̃−τ(M, t−(x(N)),T , t∗−(y(N ′)))0

− (3.30)

where 0̃− = 0̃−(M,N, 0,x(N)) and0− = 0−(M,N, 0,y(N ′)). This formula is obtained by
the insertion of the fermionic operator resz : ψ∗(z)z d

dzψ(z) : inside the fermionic correlator.

3.5. Determinant formulae

With the help of the Wick theorem [5], applied to (3.20), one obtains the following formulae:

Proposition 4. A generalization of Milne’s determinant formula

τr(M, t
+(x(N)), β) =

det
(
xN−k
i τr (M − k + 1, t+(xi), β)

)N
i,k=1

det
(
xN−k
i

)N
i,k=1

. (3.31)

Proof.

τr(M, t
+(x(N)), β) = (x1 · · · xN)N−M−1∏

i<j (xi − xj )

×〈M|ψM−1 . . . ψM−Nψ∗
(

1

xN

)
. . . ψ∗

(
1

x1

)
e−A(β)|M〉 (3.32)

= (x1 . . . xN)
N−M−1∏

i<j (xi − xj )
det

(
〈M|ψM−kψ∗

(
1

xi

)
e−A(β)|M〉

)N
i,k=1

(3.33)

=
det

(
xN−k
i τr (M − k + 1, t+(xi), β)

)N
i,k=1

det
(
xN−k
i

)N
i,k=1

. (3.34)

�

Proposition 5. For r = 0 we have the determinant formula

τr(M, t
+(x(N)), t

∗+(y(N))) =
det

(
F(xiyj )

)N
i,j=1

0̃+(M,N, 0,x(N))0+(M,N,T ,y(N))
(3.35)

F(xiyj ) = 〈M −N |ψ∗
(

1

xi

)
ψ
(
T , yj

) |M −N〉. (3.36)

To prove (3.35) we consider a tau-function τr(M, t
+(x(N)), t

∗+(y(N))) and apply Wick’s
theorem.
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3.6. Integral representations

For the fermions (3.11) we easily obtain the following relations:∫
ψ(T , αz) dµ(α) = ψ (T + T (µ), z)

∫
αn dµ(α) = e−Tn(µ) (3.37)∫

ψ∗
(

−T̃ ,
1

αz

)
dµ̃(α) = ψ∗

(
−T̃ − T̃ (µ̃),

1

z

) ∫
αn dµ̃(α) = e−T̃n(µ̃) (3.38)

where the functionsµ and µ̃ are some integration measures, and the shifts of timesTn are defined
in terms of the moments of these measures. Therefore, thanks to the fermionic representation
(3.20) we have the following relations for the tau-function:

Proposition 6. The integral representation formula holds∫
0̃T̃ (α̃x(N))

τ (M, t+(α̃x(N)),T + T̃ , t+(αy(N)))

τ (M, 0,T + T̃ , 0)
0T (αy(N))

N∏
i=1

dµ̃(α̃i)
N∏
i=1

dµ(αi)

= 0̃T̃ +T̃ (µ̃)(x(N))
τ (M, t+(x(N)),T + T̃ + T̃ (µ̃) + T (µ), t+(y(N)))

τ (M, 0,T + T̃ + T̃ (µ̃) + T (µ), 0)

×0T +T (µ)(y(N)) (3.39)

where 0T (αy(N)) = 0+(M,N,T ,αy(N)), 0̃T̃ (α̃x(N)) = 0̃+(M,N, T̃ , α̃x(N)), αy(N) =
(α1y1, α2y2, . . . , αNyN) and α̃x(N) = (α̃1x1, α̃2x2, . . . , α̃NxN). In particular,∫
τ
(
M, t,T , t+(αy(N))

)
τ (M, 0,T , 0)

0T (αy(N))
N∏
i=1

dµ(αi)

= τ
(
M, t,T + T (µ), t+(y(N))

)
τ (M, 0,T + T (µ), 0)

0T +T (µ)(y(N)). (3.40)

Remember that an arbitrary linear combination of tau-functions is not a tau-function. Formulae
(3.39) and (3.40) give the integral representations for the tau-function (3.3). It may help to
express a tau-function with the help of a simpler one.

Let us consider the following q-integrals [10]:

−q−a−1
∫ ∞

0
ψ(T , α(q−1 − 1)z)E−1

q (−α)αa dqα = ψ
(
T + T a, z

)
(3.41)

1

7q(b − a)

∫ 1

0
ψ(T , αz)αa

(αq; q)∞
(αqb−a; q)∞ dqα = ψ(T + T a,b, z) (3.42)

where Eq(x) = ((1 − q)x; q)−1
∞ . Then

T an = − log
(
(1 − q)n7q(a + n + 1)

)
T a,bn = log

7q(b + n + 1)

7q(a + n + 1)
. (3.43)

In the same way one can consider the Miwa change to t− of (1.7).
Now we are able to write down integration formulae for Milne hypergeometric functions,

see examples 2, 3 and (3.24), (3.20). We can express p+1�s and p+1�s+1 in terms of p�s with
the help of (3.41) and (3.42). In [1] a different integral representation formula was presented,
which was based on the q-analogue of Selberg’s integral of Askey and Kadell.
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3.7. Specification of function r

Example 1. Let r(n) = 1 for all n,

τr=1(M, t, t
∗) = exp

( ∞∑
n=1

ntnt
∗
n

)
(3.44)

which is a vacuum tau-function for the two-dimensional Toda lattice. Formula (3.44) is a
manifestation of the summation formulae for the Schur functions [10]. Let us note that this is
also an example of the function 1�0 (see (1.13)).

Example 2.

pr
(q)
s (n) =

∏p

i=1(1 − qai+n)∏s
i=1(1 − qbi+n)

. (3.45)

For the variables t+(x(N)) and setting t∗ = t∗+(1, q, q2, . . .)we obtain Milne’s hypergeometric
function (1.8),

τr(M, t
+(x(N)), t

∗+(1, q, q2, . . .)) = p�s

(
a1 +M, . . . , ap +M

b1 +M, . . . , bs +M

∣∣∣∣ q,x(N))

=
∑

n
l(n)�N

(qa1+M; q)n · · · (qap+M; q)n
(qb1+M; q)n · · · (qbs+M; q)n

qn(n)

Hn(q)
sn(x(N)). (3.46)

Example 3. To obtain Milne’s hypergeometric function of two sets of variables x(N),y(N) we
use t+(x(N)) and t∗+(y(N)). This choice restricts the sum over partitions n with l(n) � N . Put

pr
(q)
s (n) =

∏p

i=1(1 − qai+n)∏s
i=1(1 − qbi+n)

1

1 − qN−M+n
(3.47)

eTn = (1 − q)n7q(n +N −M + 1)

∏s
i=1(1 − q)n7q(bi + n + 1)∏p

i=1(1 − q)n7q(ai + n + 1)
(3.48)

7q(a) = (1 − q)1−a (q; q)∞
(qa, q)∞

(qa, q)n = (1 − q)n
7q(a + n)

7q(a)
. (3.49)

Here 7q(a) is a q-deformed Gamma-function. We obtain (see section 3 of [12] for help)
Milne’s formula (1.13)

τr(M, t
+(x(N)), t

∗+(y(N))) = p�s

(
a1 +M, . . . , ap +M

b1 +M, . . . , bs +M

∣∣∣∣ q,x(N),y(N))

=
∑

n
l(n)�N

qn(n)

Hn(q)

sn(x(N))sn(y(N))

sn(1, q, . . . , qN−1)

(qa1+M; q)n · · · (qap+M; q)n
(qb1+M; q)n · · · (qbs+M; q)n . (3.50)

This is the KP tau-function (but not the TL one because (3.47) depends on the TL variableM).
To find the basic hypergeometric function of one set of variables p�s

(
a1+M,...,ap+M
b1+M,...,bs+M

∣∣q,x(N))we

must put indeterminates y(N) in (3.50) as yi = qi−1, i = (1, . . . , N). This function satisfies
the following q-difference equation:(

1

x

(
1 − qD

)− pr
(q)
s (D)

)
p�s(a1, . . . , ap; b1, . . . , bs; q, x) = 0 D := x∂x. (3.51)
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Example 4. The hypergeometric function (1.13), (3.50), 1�1
(
a

b

∣∣q,x(N),y(N)) can be
degenerated to 1�0

(
a
∣∣q,x(N),y(N)) by taking b → +∞ (remember that |q| < 1). The limit

b → −∞ (with the rescaling of times xi, yi → qb/2xi, q
b/2xi) is also of interest. Consider

this limit and put a = N −M .
Now we obtain an example of the KP tau-function (3.4) which is not a hypergeometric

function. Take Tn = − γ

2 (n + 1
2 )

2, or equivalently

r(n) = q−n q = e−γ (3.52)

and rescale the times once more: tk = αkpk, t
∗
k = αkp∗

k . We obtain the series

〈M|eH(t)eA(t∗)|M〉 =
∑

n

α|n|eγf2(n)sn(p)sn(p
∗) (3.53)

f2(n) = 1
2

∑
i

[
(ni − i +M − 1

2 )
2 − (−i +M − 1

2 )
2
]

(3.54)

which was recently considered in [20] (our notation n, α, γ is related to λ, q, β in [20],
respectively). This series is a generating function for double Hurwitz numbers Hurd,b(n,m)
introduced in [20]. The formula presented in [20] in our terms reads as

log〈M|eH(t)eA(t∗)|M〉 =
∑
d,b,n,m

αdγ bpnp
∗
mHurd,b(n,m)/b! (3.55)

forA see (3.1) and (3.52). Therefore, the generating function for the double Hurwitz numbers
is expressed in terms of a group cocycle of the �DO on the circle (see appendix 2), which is
the fermionic correlator under the logarithm.

Example 5. Notation and notions for this example are borrowed from [16]. Let r be a rational
function of Jakoby theta-functions θ(2xη|τ̃ ), where τ̃ is an elliptic modulus:

pr
(η)
s (n) =

∏p

i=1 θ(2η(ai + n)|τ̃ )
θ(2η(N −M + n)|τ̃ )∏s

i=1 θ(2η(bi + n)|τ̃ ) eTn−1 = [N −M]n
∏s
i=1[bi]n∏p

i=1[ai]n
.

(3.56)

Here the elliptic Pochhammer symbol [a]n is defined in terms of the elliptic number [a],

[a] = θ(2aη|τ̃ ) [a]k = [a][a + 1][a + 2] · · · [a + k − 1]. (3.57)

One can associate the elliptic Pochhammer symbol with a given partition n:

[a]n = [a]n1 [a − 1]n2 · · · [a − l + 1]nl . (3.58)

For the variables t+(x(N)) and t∗+(y(N)) we can introduce the hypergeometric function

〈M|eH(t+(x(N)))eA(t
∗+(y(N)))|M〉 = pF

(η)
s

(
a1 +M, . . . , ap +M

b1 +M, . . . , bs +M

∣∣∣∣ η,x(N),y(N))
=

∑
n

l(n)�N

sn(x(N))sn(y(N))

[N ]n

[a1 +M]n · · · [ap +M]n
[b1 +M]n · · · [bs +M]n

. (3.59)

As in the case of (1.13) this is the KP tau-function which is not the TL tau-function because
the factor [N ]n in the denominator does not depend on M . For N = 1 we obtain an elliptic
hypergeometric function of one variable [16]. For instance, to obtain the elliptic very-well-
poised hypergeometric function

p+1Wp(α1;α4, α5, . . . , αp+1; z|η, τ) =
∞∑
n=0

zn
[α1 + 2n][α1]n

[α1][n]!

p−2∏
m=1

[αm+3]n
[α1 − αm+3 + 1]n

(3.60)
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we choose

tn = zn

n
t∗n = 1

n
eTn−1 = [α1][n]!

[α1 + 2n][α1]n

p−2∏
m=1

[α1 − αm+3 + 1]n
[αm+3]n

. (3.61)

3.8. Different representations

Let us rewrite the hypergeometric series in a different way representing all Pochhammer
coefficients (qa; q)n and (a)n through Schur functions. This gives us the opportunity to
interchange the role of the Pochhammer coefficients and Schur functions in (1.8) and (1.13),
and to present different fermionic representations of the hypergeometric functions. We have
the relations (see [12])∏

(i,j)∈n

(1 − qa+j−i ) = sn(t(a, q))

sn(t(+∞, q))
(3.62)

where the parameters tm(a, q) are chosen via a generalized Miwa transform with a parameter
(‘multiplicity’) a:

tm(a, q) = 1 − (qa)m

m(1 − qm)
m = (1, 2, . . .)

sn(t(+∞, q)) = lim
a→+∞ sn(t(a, q)) = qn(n)

Hn(q)
.

(3.63)

Now we rewrite the series (3.46) only in terms of Schur functions:

p�s

(
a1 +M, . . . , ap +M

b1 +M, . . . , bs +M

∣∣∣∣ q,x(N),y(N)) = τr(M, t(+∞, q), t∗)

=
∑

n
l(n)�N

∏p

k=1 sn(t(ak +M,q))∏s
k=1 sn(t(bk +M,q))

(sn(t(+∞, q)))s−p+1 sn(x(N))sn(y(N))

sn(t(N, q))
. (3.64)

A nice feature of this formula is that there are no number coefficients at all, it is a sum of ratios
of Schur functions only.

We obtain different fermionic representations of hypergeometric functions (3.64), and
they are parametrized by a non-integer complex number b:

Proposition 7. For r = pr
(q)
s (see (3.45)) we have

τr(M, t(+∞, q), t∗) = τrb (M, t(b +M,q), t∗) rb(n) = r(n)

1 − qb+n
.(3.65)

Conclusion

We obtain Milne’s hypergeometric functions as certain tau-functions of the KP hierarchy. The
functions (1.8) are also the TL tau-functions. It means that we have a set of new relations on
the multivariate hypergeometric functions. For instance, all hypergeometric functions of the
form (3.3) satisfy bilinear Hirota equations [5] of the KP theory. One can obtain the fermionic
representations for different special functions and polynomials related to these hypergeometric
functions. Using an integral representation one can express hypergeometric functions as the
integral of rather simple hypergeometric function. We also obtain determinant representation
of (1.13), which may allow us to analyse analytical properties of multivariate tau-functions
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in terms of functions of only one variable. We wrote down the system of linear equations
on the tau-function (1.13), which may allow us to find applications to quantum mechanical
problems. Let us note that we obtain a q-deformed version of these hypergeometric functions
as tau-functions not of a q-deformed KP hierarchy [17], but of the usual KP hierarchy. It
is now an interesting problem to establish links between these results and a group-theoretic
approach to the q-special functions [10, 11] and matrix integrals.
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Appendix A. Orthogonal polynomials and matrix integrals

It is known that the hypergeometric functions (1.8) and (1.13) for q → 1 appear in the group
representation theory and are connected with the so-called matrix integrals [11]. On the other
hand, the set of examples [15] reveals a connection between the matrix integrals [19] and the
soliton theory. To establish this connection in our case, it is useful to consider the related
systems of the orthogonal polynomials. Let us briefly describe how to write down these
polynomials.

Let M+ (respectively, M−) be the largest (respectively, the smallest) integer zero of r(n).
The function

f +
r (zz

∗) =
+∞∑
n=0

(zz∗)n+M+ eTn+M+ −TM+ (A.1)

is the eigenfunction of the operator 1
z
r(D),D = z d

dz with the eigenvalue z∗. Since operator
r(D) is invertible on the functions {zM,M > M+} we write

f +
r (zz

∗) =
(

1 − 1

r(D)
zz∗
)−1

(zz∗)M+ . (A.2)

For example, if we take r(n) = n we obtain f +
r (zz

∗) = ezz
∗
.

We use these functions as weight functions for a system of orthogonal polynomials
{π±
n , n = 0, 1, 2, . . .}, related to the hypergeometric solution of KP:∫
γ

π−
n (t, β, z)e

ξ(t,z)f +
r (zz

∗)eξ(β,z
∗)π+

m(t, β, z
∗) dz dz∗ = e−φM++n(t,β)δn,m. (A.3)

For r(n) = n we have the corresponding two matrix integral [19]:

τ(M, t, β) =
∫

eT rξ(t,Z)f +
r

(
T r(ZZ∗)

)
eT rξ(β,Z

∗) dZ dZ∗. (A.4)

Here Z,Z∗ are Hermitian M ×M matrices.

Appendix B. String equations and ΨDO on the circle

Let us describe relevant string equations following Takasaki and Takebe [3]. We shall also
consider this topic in a more detailed paper.

Following [9] we introduce infinite matrices to describe KP and TL flows and symmetries.
Zakharov–Shabat dressing matrices are K and K̄ . K is a lower triangular matrix with unit
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main diagonal: (K)ii = 1. K̄ is an upper triangular matrix. The matrices K, K̄ depend on
the parameters M, t,T , t∗. The matrices (A)ik = δi,k−1, (Ā)ik = δi,k+1. For each value of
t,T , t∗ and M ∈ Z they solve a Gauss (Riemann–Hilbert) factorization problem for infinite
matrices:

K̄ = KG(M, t,T , t∗) G(M, t,T , t∗) = eξ(t,A)AMG(0,T , 0)ĀMeξ(t
∗,Ā). (B.1)

We put log(K̄ii) = φi+M and a set of fields φi(t, t∗), (−∞ < i < +∞) solves the hierarchy of
higher two-dimensional TL equations. Take L = KAK−1, L̄ = K̄ĀK̄−1 and (0)ik = iδi,k ,

M̂ = K0K−1 + M +
∑
ntnL

n, ̂̄M = K̄0K̄−1 + M +
∑
nt∗n L̄

n. Then the KP additional
symmetries [3, 6] and higher TL flows [9] are written as

∂βnK = −
((
r(M̂)L−1

)n)
−
K ∂βnK̄ =

((
r(M̂)L−1

)n)
+
K̄ (B.2)

∂t∗nK = − (L̄n)−K ∂t∗n K̄ = (
L̄n
)

+ K̄. (B.3)

Then the string equations are

L̄L = r(M̂) ̂̄M = M̂. (B.4)

The first equation is a manifestation of the fact that the group timeβ1 of the additional symmetry
of KP can be identified with the Toda lattice time t∗1 . In terms of the tau-function written in Miwa
variables we have equations (3.28). The second string equation is related to the symmetry of
our tau-functions with respect to t ↔ β. The KP tau-function (3.4) can be obtained as follows:

G(M, t,T , t∗) = G(0,T , 0)U(M, t, β) U(M, t, β) = U+(t)U−(M, β). (B.5)

U+(t) = exp (ξ(t,A)) U−(M, β) = exp
(
ξ(β,A−1r (0 +M))

)
.

(B.6)

The matrix G(0,T , 0) is related to the transformation of equation (2.19) to equation (3.25).
By taking the projection [9] U �→ U−− for non-positive values of matrix indices we obtain a
determinant representation of the tau-function (3.4):

τr(M, t, β) = detU−−(M, t, β)
det

(
U+−−(t)

)
det

(
U−

−−(M, β)
) = detU−−(M, t, β) (B.7)

since both determinants in the denominator are equal to unity. Formula (B.7) is also a Segal–
Wilson formula for the GL(∞) 2-cocycle CM

(
U+(−t), U−(−β)) (‘Japanese cocycle’ [5]).

Choosing the function r as in subsection 3.7 we obtain the hypergeometric functions listed in
section 1.

Remark 2. Therefore, the hypergeometric functions which were considered above have
the meaning of a GL(∞) two-cocycle on the two multiparametrical group elements U+(t)

and U−(M, β). Both elements U+(t) and U−(M, β) can be considered as elements of
a group of pseudodifferential operators on the circle. The corresponding Lie algebras
consist of the multiplication operators {zn; n ∈ N0} and of the pseudodifferential operators
{( 1
z
r(z d

dz +M)
)n ; n ∈ N0}. Two sets of group times t and β play the role of indeterminates

of the hypergeometric functions (1.13). Formulae (3.4) and (3.6) mean the expansion of a
GL(∞) group 2-cocycle in terms of a corresponding Lie algebra 2-cocycle

cM

(
z,

1

z
r(D)

)
= r(M) cM

(
r̃(D)z,

1

z
r(D +M)

)
= r̃(M)r(M) D = z

d

dz
. (B.8)
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A Japanese cocycle is cohomological to the Khesin–Kravchenko cocycle [18] for the�DO on
the circle:

cM ∼ c0 ∼ ωM (B.9)

which is

ωM(A,B) =
∮

res∂ A[log(D +M),B] dz A,B ∈ �DO. (B.10)

For the group cocycle we have

CM

(
e−∑ zntn , e−∑(z−1r(D))nβn

)
= τr(M, t, β) (B.11)

where we imply that the order of �DOr(D) is 1 or less. Let us also note that in the case
of hypergeometric functions p�s (1.8), the condition p − s � 1 is the condition for the
convergence of this hypergeometric series (see [10]). Namely, the radius of convergence is
finite in the case where p − s = 1, it is infinite when p − s < 1 and it is zero for p − s > 1.

Remark 3. Let D = z d
dz . Consider

w(n, z) = exp

[
−

∞∑
m=0

t∗m

(
1

z
r(D)

)m ]
zn

w∗(n, z) = exp

[ ∞∑
m=0

t∗m

(
1

z
r(−D)

)m ]
z−n dz.

(B.12)

The set of functions {w(n, z), n = M,M + 1,M + 2, . . .}, may be identified with a Sato
Grassmannian related to the cocycle (B.11). The dual Grassmannian is the set of 1-forms
{w∗(n, z), n = M,M + 1,M + 2, . . .}.
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